2021 International Residential Code

Revise as follows:

AF103.6.1 Subslab Vent pipe. A minimum 3-inch-diameter (76 mm) ABS, PVC or equivalent gastight pipe shall be embedded vertically into the subslab aggregate or other permeable material before the slab is cast. A “T” fitting or equivalent method shall be used to ensure that the pipe opening remains within the subslab permeable material. Not less than 4 feet (102 cm) of perforated pipe or geotextile matting shall be connected to each of the horizontal openings of the tee fitting. Alternatively, the 3-inch (76 mm) pipe shall be inserted directly into an interior perimeter drain tile loop or through a sealed sump cover where the sump is exposed to the subslab aggregate or connected to it through a drainage system. The pipe shall be extended up through the building floors, and terminate not less than 12 inches (305 mm) above the surface of the roof in a location not less than 10 feet (3048 mm) away from any window or other opening into the conditioned spaces of the building that is less than 2 feet (610 mm) below the exhaust point, and 10 feet (3048 mm) from any window or other opening in adjoining or adjacent buildings. All above ground material used shall comply with Section P3002.1.

Reason Statement: This proposal prevents a common field problem where the plumbing "tee" fitting fills with concrete when the slab is cast and clarifies that the pipe and fitting material requirements shall be consistent with the IRC.

Cost Impact: The code change proposal will increase the cost of construction
Additional 10-foot pipe, costing approximately $10-15, is required.
RB291-22

2021 International Residential Code

Revise as follows:

AF103.8 Vent pipe accessibility. Radon vent pipes shall be accessible for future fan installation through an attic or other area outside the habitable space. The pipe shall be centered in an unobstructed cylindrical space having a height of not less than 36 inches (91 cm) and a diameter of not less than 18 inches (46 cm) in the location where the fan would be installed.

Exception: The radon vent pipe need not be accessible accessed from in an attic space where an approved roof-top electrical supply is provided for future use on the roof top or other area outside the habitable space.

Reason Statement: This change simply reserves adequate space in the attic for future installation of a radon fan. If there is not enough room to add a fan if needed then the entire piping system must be abandoned and redone. This is a common field failure where the pipe is run too close to the eave and is inaccessible.

Cost Impact: The code change proposal will not increase or decrease the cost of construction. This proposal defines a volume of space in an attic location where a radon fan can be installed, if necessary. No new material costs are added, however, the defined volume space requirement assists with proper pipe layout design to facilitate any future fan installation.
2021 International Residential Code

Revise as follows:

AF103.5.3 Submembrane Vent pipe. A plumbing tee or other approved connection shall be inserted horizontally beneath the sheathing and connected to a 3- or 4-inch-diameter (76 or 102 mm) fitting with a vertical vent pipe installed through the sheathing. Not less than 10 feet (254 cm) of perforated pipe or geotextile matting shall be connected to each of the horizontal openings of the tee fitting or the two horizontal openings shall be connected to the interior drain tile system. The vent pipe shall be extended up through the building floors, and terminate not less than 12 inches (305 mm) above the roof in a location not less than 10 feet (3048 mm) away from any window or other opening into the conditioned spaces of the building that is less than 2 feet (610 mm) below the exhaust point, and 10 feet (3048 mm) from any window or other opening in adjoining or adjacent buildings. Above ground pipe material shall comply with Section P3002.1.

Reason Statement: It is a common field problem where the horizontal openings of the "tee" fitting will be closed off by suction on the membrane. This makes the suction point non-functional. The proposal further clarifies the piping material consistent with the IRC plumbing section.

Cost Impact: The code change proposal will increase the cost of construction
(2) 10 foot stick of perforated pipe are additionally required for the system. This will cost $20-$25.
2021 International Residential Code

Revise as follows:

AF103.3 Soil-gas-retarder. A minimum 6 mil (0.15 mm) [or 3 mil (0.075 mm) cross-laminated] polyethylene ASTM E1745 Class A or equivalent flexible sheeting material shall be placed on top of the gas-permeable layer prior to casting the slab or placing the floor assembly to serve as a soil-gas-retarder by bridging any cracks that develop in the slab or floor assembly, and to prevent concrete from entering the void spaces in the aggregate base material. The sheeting shall cover the entire floor area with separate sections of sheeting lapped not less than 12 inches (305 mm). The sheeting shall fit closely around any pipe, wire or other penetrations of the material. Punctures or tears in the material shall be sealed or covered with additional sheeting.

Reason Statement: This change makes the Appendix consistent with the material requirements in the body of the code.

Cost Impact: The code change proposal will not increase or decrease the cost of construction

An ASTM 1745 Class A vapor retarder is already required in R506.2.3.
Proponents: Thomas Bowles, representing EPA (bowles.thomas@epa.gov); Jane Malone, representing American Association of Radon Scientists and Technologists (janemalone@dcgmail.com); Jonathan Wilson, representing National Center for Healthy Housing (jwilson@nchh.org); Kevin Stewart, representing American Lung Association (kevin.stewart@lung.org); Ruth McBurney, representing Conference of Radiation Control Program Directors

2021 International Residential Code

Revise as follows:

AF101.1 General. This appendix contains requirements for new construction in jurisdictions where radon-resistant construction is required. Inclusion of this appendix by jurisdictions shall be determined through the use of locally available data or determination of Zone 1 designation in Figure AF101.1 and Table AF101.1.

Delete without substitution:
1. a pCi/L stands for picocuries per liter of radon gas. The US Environmental Protection Agency (EPA) recommends that homes that measure 4 pCi/L and greater be mitigated.

The EPA and the US Geological Survey have evaluated the radon potential in the United States and have developed a map of radon zones designed to assist building officials in deciding whether radon-resistant features are applicable in new construction.

The map assigns each of the 3,141 counties in the United States to one of three zones based on radon potential. Each zone designation reflects the average short-term radon measurement that can be expected to be measured in a building without the implementation of radon-control methods. The radon zone designation of highest priority is Zone 1. Table AF101.1 lists the Zone 1 counties illustrated on the map. More detailed information can be obtained from state-specific booklets (EPA-401-R-93-021 through 070) available through the State Radon Offices or from the EPA Regional Offices.

FIGURE AF101.1 EPA MAP OF RADON ZONES
The EPA recommends that this county listing be supplemented with other available state and local data to further understand the radon potential of a Zone 1 area.

Reason Statement: The EPA map and Zone 1 county list are based in part on a 1993 survey that measured radon in 5694 homes, less than two per each of the 3141 counties in the US. As more recent data have been compiled by states and the US Centers for Disease Control and Prevention, it is evident that more counties’ average radon test results equal or exceed the EPA action level.

Radon Zone 1 counties are defined as having a predicted year-round average indoor radon screening level in the lowest livable area of a structure greater than or equal to four picocuries per liter of air (pCi/L). Relying on an average radon level does not address the full range of risk within a given county. Levels greater than 4 have been found in 85% of US counties tested.

Restricting localities as to when or how they may include the appendix (“shall be determined through”) can cause this appendix to conflict with local authority.

While opponents may suggest otherwise, deleting the county information does not impose a requirement for adoption in Zones 2 and 3. Appendix F will remain an optional appendix that is only in effect where the jurisdiction has adopted it.

In response to stakeholder feedback EPA has been deemphasizing the use of the EPA zone map as a reference for building codes and specifications. The purpose of the EPA radon zone map, since its inception, has been to show potential of risk not ACTUAL risk. While it is still a useful tool, it unintentionally creates a false sense of security for those in Zone 2 and Zone 3 that risk in those areas is non-existent. With this in mind, the EPA Indoor airPLUS program (a voluntary partnership and labeling program that helps new home builders improve the Indoor Air Quality) plans to include testing in ALL ZONES in its upcoming Version 2 update. The fact remains that radon is found in all zones and to truly protect against radon you need to test regardless of zone.

It is suggested that the following information be added to the Commentary for the IRC: Code officials seeking radon risk information may consult with
the state radon programs listed at https://www.crcpd.org/page/Radon or information listed at https://www.epa.gov/radon/epa-map-radon-zones-and-supplemental-information#datainfo.

Cost Impact: The code change proposal will increase the cost of construction. Adoption of the Appendix adds to the cost of construction. According to results from the Home Innovations Research Lab’s survey of homebuilders, the average installation cost for a passive system in 2019 for a single-family detached home was approximately $463, up from the $377 reported for 2018 and $367 reported for 2017.
Proponents: David Kapturowski, representing American Association of Radon Scientists and Technologists; Jane Malone, representing American Association of Radon Scientists and Technologists (janemaloneedc@gmail.com); Thomas Bowles, representing EPA (bowles.thomas@epa.gov); Jonathan Wilson, representing National Center for Healthy Housing (jwilson@nchh.org); Kevin Stewart, representing American Lung Association (kevin.stewart@lung.org); Ruth McBurney, representing Conference of Radiation Control Program Directors (rmcburney@crcpd.org)

2021 International Residential Code

Revise as follows:

AF103.2 Subfloor preparation. A layer of gas-permeable material shall be placed under all concrete slabs and other floor systems that directly contact the ground and are within the walls of the living spaces of the building, to facilitate future installation of a subslab depressurization system, if needed. The gas-permeable layer shall consist of one of the following:

1. A uniform layer of clean aggregate, not less than 4 inches (102 mm) thick. The aggregate shall consist of material that will pass through a 2-inch (51 mm) sieve and be retained by a \(\frac{1}{4}\)-inch (6.4 mm) sieve.

2. A uniform layer of sand (native or fill), not less than 4 inches (102 mm) thick, overlain by a layer or strips of geotextile drainage matting designed to allow the lateral flow of soil gases.

Exception: A sand base course is not required under geotextile drainage matting where the concrete slab is installed on well-drained or sand-gravel mixture soil classified as Group 1 according to the United Soil Classification in accordance with Table R405.1

3. Other materials, systems or floor designs with demonstrated capability to permit depressurization across the entire subfloor area.

Reason Statement: Well drained soils do not require a sand layer and the matting can be laid right on the native soils, where applicable.

Cost Impact: The code change proposal will decrease the cost of construction

This will eliminate the requirement for a sand base layer where appropriate soils exist.