Radon In Private Well Water Mitigation

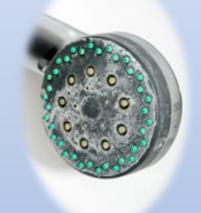
David Hill, RadonAway

Mitigation Techniques

- Storage Tanks
- Blending
- Reverse Osmosis
- Activated Charcoal
- Aeration Units

What's In The Water?

- Radon
- Radionuclides
- Microorganisms
- Hardness
- Corrosivity
- Total Dissolved
 Solids/Conductivity


- pH
- O 2
- Metals
- Turbidity

What is the Radon Level?

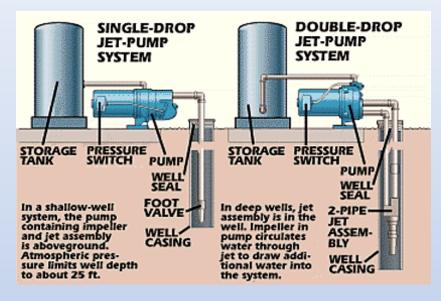
- Minimum of Two Samples
- Best Practice Would Be To Have Samples From Different Times During The Year
- Radon Levels Will Vary
- Treat The Highest Level

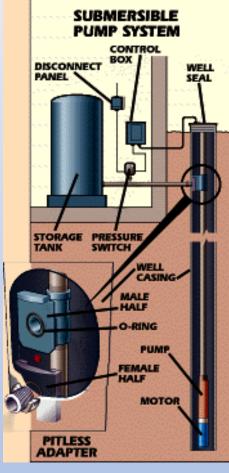
Hardness Problems

- Clogging
- Scale build up on system components

Metals

- Aeration yields insoluble gelatinous compound
- Iron bacteria clog pipes, impart bad taste and odor




Relevant Contaminant Levels

Parameter	Recommended Levels
pH	6.5 – 8.5
Iron	< 0.3 mg/L
Manganese	< 0.05 mg/L
Turbidity	< 1 ntu
Corrosion Index	± 0.5
Conductivity or TDS (Canadian*)	<1,500
	(RO1-100 micromhos/cm)

Pre-treat Any Contaminant That Can Foul The Radon In Water System

Well Characteristics

- Shallow well: single drop jet pump
- Medium well: double drop jet pump
- Deep well: submersible pump

Flow Rate

Recommended Flow Rates for Home Water System (Gallons/Minute)

No of	Number of Bathrooms in Home				
Bedrooms	1	1.5	2	3	
2	6	8	10	12	
3	8	10	12	14	
4	10	12	14	16	
5	12	13	15	17	
6	13	15	16	18	
	Flow rate in Gallons per Minute				

(Modified from Private Water Systems Handbook)

Determining Gallons/Minute

- Ensure no one is using water
- Tank should be at full pressure with pump off
- Shut off pump
- Drain water into bucket of known volume
- Calculate gallons drained
- Turn off water and close drain valve
- Turn on well pump and time until shutoff
- Convert seconds to minutes = gallons/minute

Water Pressure Requirements

Water Pressure/Pipe Size/GPM

Size	e of:	Water Pressure (PSI)							
Water	Service	30	35	40	45	50	55	60	65
Meter	Line	Gallons Per Minute (GPM)							
5/8"	1/2"	2	3.5	5	6	6.5	7	7.5	8
5/8"	3/4"	3.5	5	7	8.5	9.5	10	11	11.5
3/4"	3/4"	5	7	8	9	11	12	14	15
3/4"	1"	7.5	10	11.5	13.5	15	16	17.5	18.5
1"	3/4"	6	7.5	9	10	12	13	15	16
1"	1"	9	12	13.5	17	19	20	21	21

Checking Pressure

- Turn on water near system
- Note when pumps turns on and goes off
- Low pressure is when pump goes on (20-35 psi)
- High pressure when pump goes off (40-60 psi)
- On/Off pump cycle should take about 45 seconds

Well Room Characteristics

Codes

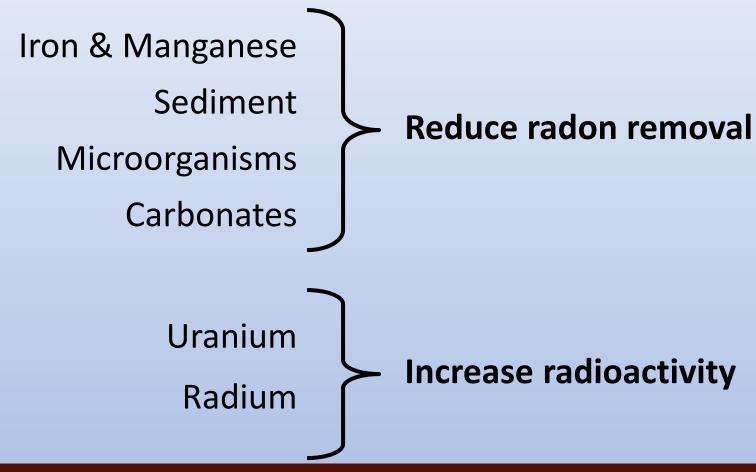
- Check local codes
- Follow local codes, e.g.
 - No placement within 3 feet of electrical panel
 - No placement that blocks other systems
- Use licensed plumber and or electrician if required by code

Radon System Placement

- Locate equipment:
 - After other treatment systems
 - Before final pressure tank
 - By-pass outdoor spigots and sprinklers

Mitigation Systems

- Storage Tanks
- Blending
- Reverse Osmosis
- Activated Charcoal
- Aeration Units



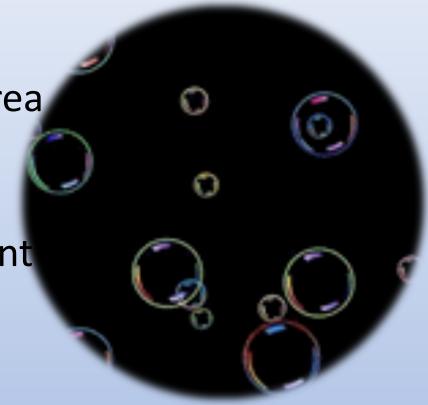
Granular Activated Carbon (GAC)

- The GAC system adsorbs radon from the water without the use of mechanical components
- GAC systems, when properly sized and installed, can yield 90+% reduction of radon when initially installed. Other contaminants in the water can adversely affect the radon removal efficiency of the GAC system over time

Carbon Fouling

Carbon Cautions

- Fouling maintenance
- Gamma emanations
- Carbon disposal
- Collection of radioactivity on pre-filters


Aeration Principles

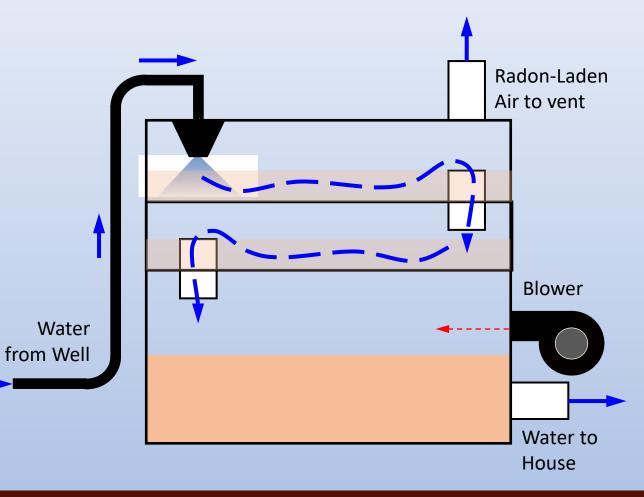
 Radon has high Henry's Constant (easily released from water)

"Air-stripping": Increases surface area of air:water contact

Allows radon to off-gas

 Lots of small bubbles in small amount of water releases more radon

Aeration Units

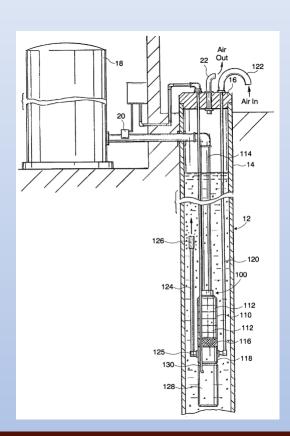

- Spray Aeration
- Jet Aeration
- Cascade Aeration
- Packed Tower
- Tray Aeration
- Pressure Aeration
- Diffused-bubble

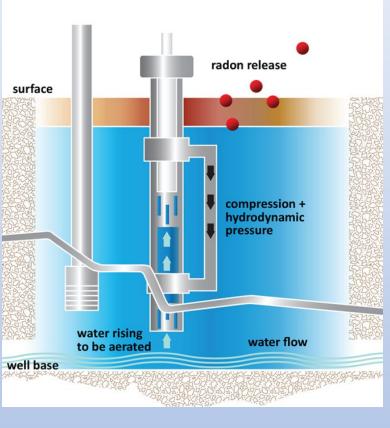
BAT

- Best Available Technology based on:
 - Large removal efficiencies (over 99.9%)
 - Compatibility with other treatment processes
 - Availability of treatment technologies

Shallow Tray Aeration

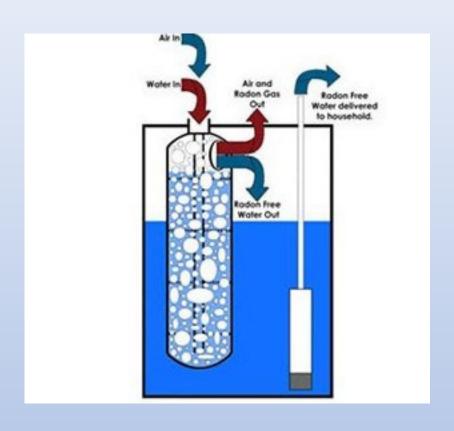
- Well water sprayed into shallow tray
- Air pumped through water in tray
- Treated water falls to reservoir on bottom and is pumped to house


Shallow Tray Cautions


- Uses 100 ft³/minute of air
- Can depressurize basement and/or back draft appliances
- Vent Line requires an inline fan

In Well Aeration

- Air pumped down pipe into well
- Air pump located outside
- Radon vented at well head



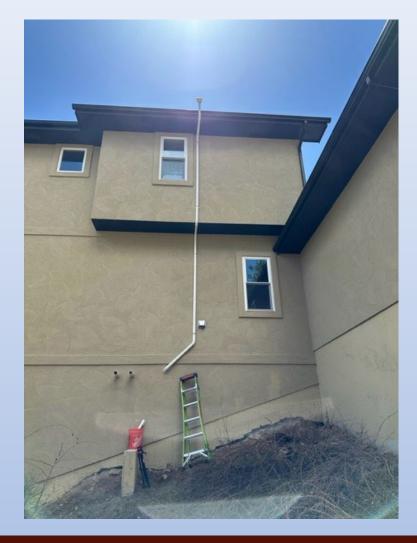
Bubble Aeration

- Water sprayed into chamber with air
- Radon vented to outside

Diffused-Bubble Aeration

- Water sprayed into chamber
- Flows from aerated chamber to aerated chamber
- Radon vented to outside

Diffused-Bubble Aeration


Aeration Comparison

Treatment Method	Removal Efficiency, %	Flow Range, m³ d ⁻¹	Unit Construction Cost, \$ m ⁻			
I. Aeration Methods						
1. Packed tower	79 to >99%	49 to 102,740	18 to 481			
2. Diffused bubble						
a. Single-stage	93	431	312			
b. Multi-stage	71 to >99	65 to 6,540	11 to 433			
3. Spray Aeration	~88ª (est)	1,025	5.3			
4. Slat tray	86 to 94	1,989 to 2,453	5.3 to 124			
5.Cascade aeration	~88ª (est)	5,450	7.9			
II. Granular Activated Carbon	20 to >99	11 to 981	77 to 365			
^a Estimated. Source: Drago (1998), Pontius (1998).						

Aeration Installation Challenges

- No Standards For Radon In Water Mitigation
- System Must Be Sealed
- Mechanical Components Can Fail
- Venting High Levels of Radon
 - Follow Venting Standards For Air
- Electrical Connection Should Be A Dedicated Circuit
- Multiple Professional Skills/Licenses Needed
 - Radon
 - Electrical
 - Plumbing
 - Water Treatment

Venting Challenges

Point of Entry Systems Must Be Sealed

OM&M

- Retesting Is a Must
- Label All Components For Future Servicing
- Annual Service Is a Requirement

ANNUAL SERVICE AND TESTING IS A REQUIREMENT!