

AR HE PARTY

Nashville

Pressure Field Extension Testing

Gunnar Barr

Indoor Environments[™] 2023 - Radon and Vapor Intrusion Symposium

H W

Topics

- Why Diagnostics?
- Designing Systems
- Pressure Field Extension Testing Equipment
- Pressure Field Extension Testing Process
- Examples

Why Diagnostics? – Side by Side Buildings (Michigan)

Mitigation Using Sub Slab Depressurization Systems (SSD)

• Designed to:

- Meet a minimum sub slab vacuum
- Apply vacuum to the soil below the slab through pits
- Discharge soil gas outside the building
- Run continually
- Mitigate not remediate

Designing SSDS – Required Information – A.R.E.

• Applied Vacuum

- Expressed in inches of water column or pascals
- Resulting Airflow Yield
 - Expressed in Cubic Feet Per Minute
- Effected Area
 - Expressed as radius of influence (ROI)

Obtaining design data through Pressure Field Extension Testing (PFE)

- Pressure Field Extension Testing
 - Apply vacuum through diagnostic suction pits
 - 2-3 inch holes
 - Record applied vacuum
 - Record airflow yield
- Record vacuum at diagnostic test holes
 - ~ 3/8 inch holes
 - Various distances from suction pit
- Run test at multiple fan speeds
- Detailed building drawing

PFE Testing Equipment

Exposure Safety

1. Head 2. Inline HEPA Filter 3. Custom Diagnostic Fan 4. Carbon on Exhaust

PFE General Process

- Select diagnostic suction pits locations that can be used as permanent suction pit locations
- Test near interior and exterior walls and columns
- Determine test speeds based on initial readings
- Test for sub slab communication across footings, grade beams, and tenant spaces
- Look for sub slab anomalies
- Don't stop collecting data until you are confident with the results

Anomalies

- Soil types
- Grade Beams
- Utility Trenches
- Elevation Changes
- Drainages Systems
- Settling in high traffic areas

Safety Concerns

Case Study

- NYC Suburb
- Warehouse
- 25,000 square Feet
- Two tenants

Nashville

Various distances and directions from applied vacuum

Gathering Data

Distance (ft.) Series 1 Series 2 Airflow Yield (cfm) 45 30 Applied Vacuum ("w.c.) 20 12 T-1 10 0.104 0.071 **T-2** 20 0.012 0.005 **T-3** 30 0.005 BG T-4 40 BG BG T-5 0.701 0.495 10 **T-6** 0.150 0.111 20 **T-7** 30 0.003 0.002 **T-8** 40 0.003 BG **T-9** 0.129 10 0.091 **T-10** 0.018 0.011 20 T-11 30 0.002 0.002 **T-12** 0.205 10 0.155 T-13 20 0.050 0.040 **T-14** 30 0.002 0.002 Resulting airflow yields (cfm)

2 different applied vacuum levels ("w.c.)

> 20' ROI 12" w.c. applied 30 cfm airflow yield

Gathering Data

Resulting airflow yields (cfm)

	Distance (ft.)	Series 1	Series 2	
Airflow Yield (cfm)		15	10	
Applied Vacuum ("w.c.)		20	12	
T-38	10	0.239	0.143	
Т-39	20	0.011	0.027	
Т-40	< 30	0.009	0.004	>
T-41	10	0.247	0.137	
T-42	20	0.036	0.051	
Т-43	< 30	0.021	0.180	

2 different applied vacuum levels ("w.c.)

30' ROI 12" w.c. applied 10 cfm airflow yield

Gathering Data

	Distance (ft.)	Series 1	
Airflow Yield (cfm)		40	
Applied Vacuum ("w.c.)		1.8	
SSP 1 (1' from applied)		1.4	
T-31	10	1.30	
T-35	15	1.230	
T-36	20	1.330	
T-37	38	1.270	

• It's rare

- But it happens
- Justifies extensive diagnostics

ROI in excess of room size 1.8" w.c. applied 40 cfm airflow yield

Final Design

	A	D	SUCTIO		1	,	8	MAX	BG	DATE	T	Ŵ
1		<u> </u>	V1	V2	V3				0.001	01/06/15	25	SDW/
2	CEM		52	37	23			67	0.001	01/00/13	25	51100
3	SSP 1		49	28	1 57			71				
4	SSP 2		v	2.0	1.01							
			20	10	5							
	T1	10	1 5400	0.9500	0 5600							
7	T2	20	0.8200	0.5000	0.3100							
	T2	30	0.0200	0.0000	0.01700							
	T4	40	0.3700	0.2200	0 1300							
10	T5	50	0 2700	0.1500	0.0780							
	T6	10	1 4000	0.8700	0.5300							
13	T7	20	0.9500	0.6300	0.3700							
16	T8	30	0.6600	0.4200	0.2600							
18	Т9	40	0.5000	0.3200	0.2000							
16	T10	50	0.3400	0.2200	0.1400							
17	T11	10	1.2800	0.8050	0.4620							
18	T12	10	0.6500	0.4190	0.2410							
10	T13	30	0.5670	0.3590	0.2100							
30	T14	40	0.4100	0.2610	0.1690							
21	T15	50	0.1970	0.1250	0.0790							
32	T16	10	1.3200	0.0890	0.4910							
23	T17	20	0.9370	0.5890	0.3590							
26	T18	30	0.4950	0.3080	0.1890							
28	T19	40	0.1680	0.1070	0.0610							
28	T20	50	0.1380	0.0790	0.0500							
27	T21	60	0.0490	0.0530	0.0390							
28	T22	70	0.0520	0.0320	0.0210							
28	T23	80	0.0220	0.0130	0.0100							
30	T24	90	0.0130	0.0070	0.0060							
31	T25	100	0.0060	0.0040	0.0030							
12	T26	60	0.1200	0.0770	0.0420							
33	T27	70	0.0500	0.0280	0.0150							
34	T28	80	0.0600	0.0330	0.0200							
38	T29	90	0.0300	0.0150	0.0090							
38	T30	100	0.0200	0.0110	0.0080							
317												
38												
38			All value	s negativ	e unless	proc	eed	ed by	аP			
40			BG= Bad	ckground								

A	_		L DOUNT	~ -	,	g	H	20	DATE	-	
1	D	SUCTION	POINT	2			MAX	ВG	DATE		W
3		V1	V2	V3			85		01/06/15	25	snw
CFM		78	48								
SSP 1		3.9	2.2				4.3				
SSP 2											
PORT		20	10								
T20	10	1 6600	0.9610					n 001			
T10	20	1.0000	0.6160					0.001			
T18	20	0.6010	0.0100								
T17	30	0.0010	0.3440								\vdash
T1C	40	0.2330	0.1310								
TO	50	0.1210	0.0640								
u 16	60	0.0830	0.0430								
u I 11	/0	0.0560	0.0330								\vdash
" T12	80	0.0380	0.0210								
"T13	90	0.0350	0.0200								
_• T14	100	0.0270	0.0150								
" T15	110	0.0170	0.0120								
"T31	10	1.6800	0.9380								
" T32	20	1.0700	0.6180								
" T33	30	0.4900	0.2690								
" T34	40	0.2700	0.1380								
" T35	50	0.1700	0.0780								
T36	60	0.1000	0.0390								
T37	70	0.0800	0.0270								
T38	80	0.0400	0.0270								
T39	90	0.0280	BG								
T40	100	0.0200	BG								
T/1	100	0.0200	0.0040								
T/2	20	0.0000	0.0040								
= 14Z	20	0.0070	0.0040								\vdash
× 143	30	0.0080	0.0040								\vdash
144 T45	40	0.1000	0.0050								
	50	0.0130	0.0070								
<u>⊪</u> 146	60	0.0100	0.0050								
"T47	70	0.0050	0.0020								
" 148	80	BG	BG								
_≭ T49	90	BG	0.0010								
" T50	100	BG	BG								
" T51	10	1.5900	0.9140								
" T52	20	0.7510	0.4300								
" T53	30	0.5790	0.3310								
a T54	40	BG	BG								
JT55	50	0.2810	0.1570								
T56	60	0.0210	0.0110								
		0.0210	0.0110								
-											
a	BC- P	lackarour	d								\vdash
		ackgroun	u agativa ::	place r		ode	d by -				
er.	all vall	ues are no	egauve u	mess p	roce	eae	u by a	11			

	D	SUCTIO	N POIN	Γ3	,	â	MAX	BG	DATE	Ť	W
		V1	V2	V3							
CFM		100	75	50			105	0.0000	11/06/14	15	SNW
SSP 1		4.3	2.9	1.7							
SSP 2											
PORT		16	10	5.4							
T50	10	1.1300	0.8820	0.5040							
T49	20	0.3920	0.2770	0.1760							
T48	30	NA	NA	NA							
T47	40	0.0690	0.0480	0.0300							
. T46	50	0.0340	0.0210	0.0130							
T45	60	0.0350	0.0240	0.0150							
T44	70	NA	NA	NA							
T43	80	0.0040	0.0010	BG							
«T42	90	BG	BG	BG							
T41	100	BG	BG	BG							
T40	110	BG	BG	BG							
T57	10	1.3270	0.9340	0.5760							
T58	20	0.7730	0.5520	0.3420							
" T59	30	0.3600	0.2650	0.1590							
- T60	40	0.1460	0.1060	0.0650							
" T61	50	0.0880	0.0650	0.0400							
T62	60	0.0200	0.0150	0.0110							
T63	70	0.0070	0.0060	0.0050							
" T44	80	0.0050	0.0040	0.0030							
" T65	90	0.0020	0.0030	0.0020							
" T66	100	BG	BG	BG							
" T67	10	0.8750	0.5960	0.3690							
"T68	20	0.3480	0.2740	0.1370							
T69	30	0.1500	0.1310	0.0870							
JT70	40	0.0820	0.0580	0.0360							
"T71	50	0.0460	0.0580	0.0360							
. T72	60	0.0110	0.0070	0.0040							
T73	70	0.0020	BG	BG							
"T74	80	BG	BG	BG							
"T75	90	BG	BG	BG							
₌T76	100	BG	BG	BG							
. T77	10	0.9370	0.7280	0.4440							
_T78	20	0.2720	0.2010	0.1310							
_T78	30	0.1030	0.0770	0.0510							
. T80	40	0.0570	0.0440	0.0290							
₌ T81	50	0.0360	0.0270	0.0180							
₌T82	60	0.0240	0.0190	0.0130							
. T83	70	0.0180	0.0150	0.0100							
"T84	80	0.0090	0.0080	0.0060							
. T85	90	0.0060	0.0070	0.0040							
J T86	100	BG	BG	BG							
		All value	s negati	ve unles	s pro	cee	ded b	yaP			
0											
0		BG= Ba	ckground	1							

	A		C									
1		D	SUCTIO	N POIN	T 4			MAX	BG	DATE	Т	W
2			V1	V2	V3				0.001	11/07/14	15	CL
3	CFM		27					45				
4	SSP 1		0.9					1.7				
	SSP 2											
	PORT		20					43				
	T76	10	0.0610									
	T75	20	0.0230			\vdash						
	T74	30	0.0040									
	T73	40	0.0020									
_	T72	50	0.0010			\vdash						
	T71	60	0.0010									
	T70	70	BG			\vdash						
	T69	80	BG									
	T68	90	BG			\vdash						\square
_	T67	100	BG			\vdash						
-	T87	10	0.0920									
	T88	20	0.0590			\vdash						\vdash
_	T89	30	0.0070			\vdash						
	T90	40	0.0030			\vdash						\square
_	T91	50	BG			\vdash						
21	T92	60	BG			\vdash						\square
	T93	70	BG			\vdash		\vdash				\square
23	T94	10	0.0620			\vdash						\square
-	T95	20	0.0300			\vdash						
	T96	30	0.0060			\vdash						
	T97	40	0.0030			\vdash						\vdash
22	T98	50	BG			\vdash		\vdash				
	T99	60	BG			\vdash						\vdash
-	T100	70	BG			\vdash						\vdash
	T101	80	BG			\vdash						
	T102	90	BG			\vdash						\vdash
-	T103	100	BG			\vdash						
-1	T104	10	0 1930			\vdash						\vdash
-	T105	20	0.0430			\vdash						
_	T106	30	0.0060			\vdash		\vdash				
-	T107	40	0.0040			\vdash						\square
27	T108	50	BG			\vdash		\vdash				
-	T109	60	BG			\vdash		\vdash				\square
38	T110	70	BG			\vdash		\vdash				\vdash
-	T111	80	BG			\vdash		\vdash				-
41	T112	90	BG			\vdash		\vdash				-
	T112	100	BG					\vdash				
-63	1113	100	00			\vdash		\vdash				
44						\vdash		\vdash				
-			All value	o pogeti		-		odod	by a D			$ \square$
-01			All value	s negati	ve unle	ss pi	roce	eaea	руа Р			$ \square$
ø			BG= Bac	ckground	1	1						

	A		C	0				н		1	κ.	L.
		D	SUCTION	POINT S	5			MAX	BG	DATE	Т	W
Ť		-	V1	V2	V3					01/07/15	25	clr
2	CEM		/7	27	•5			67		01101115	20	G II
3	SCD 1		60	3.6				00				
4	COP 1		0.2	J.0				3.3				
1	DODT		20	40								
8	PURI	20	20	10					0.001			
7	/6	20	0.0370	0.0200					0.001			
	75	25	0.0360	0.0210								
	74	35	0.0140	0.0070								
10	73	45	0.0050	0.0020								
11	72	55	na	na								
12	71	65										
п	70	75										
14	69	85										
	68	95										
н	67	105										
,	87	10	0.0490	0.0280					P.002			
	88	20	0.0550	0.0320								
	89	30	0.0060	0.0020								
H	90	40	0.0010	BG								
2	01	0	0.0010 na	55								
31	91	60	na									
л	32	70	na									
л	33	10	0.0400	0.0400								
34	94	30	0.0160	0.0100								
21	95	40	0.0100	0.0060								
ж	96	50	0.0020	0.0020								
27	97	60	0.0010	0.0010								
38	98	70		0.0010								
28	99	80										
×	100	90										
11	101											
11	102	100										
11	103	110										
ы	104	10	0.6200	0.3550								
31	105	0										
	106	10	0.2290	0.1400								
7	107	20	0.0780	0.0450								
	108	30	0.0200	0.0130								
	109	40	0.0100	0.0080								
1	110	50	0.0030	0.0030								
40	111		0.0030	BG								
41	112	60	0.0020	BC								
۵	112	00	0.0010	bG								
a	113	70										
44												
41			BG= Bac	kground								
41												
47			All Values	s are nega	ative un	less	proc	ceede	d by a P)		

	D.	SUCTION		6	P	a	MAX	BG		DATE	Ť	Ŵ
	0	V1	V2	V3			24	20	0	01/07/15	15	CI
CFM		12	9	7						01101110		
SSP 1		0.6	0.366	0.238			1.1		_			
SSP 2												
PORT		20	10	5								
T114	10	0.0970	0.0590	0.0380								
T115	20	0.0280	0.0170	0.0120								
T116	30	0.0080	0.0060	0.0040								
T117	40	0.0060	0.0040	0.0030								
T118	50	0.0040	0.0020	0.0020								
T119	10	0.1070	0.0630	0.0410								
T120	20	0.0670	0.0390	0.0260								
T121	30	0.0380	0.0220	0.0140								
T122	40	0.0600	0.0110	0.0070								
T123	50	0.0110	0.0100	0.0070								
, 82		0.0700	0.0420	0.0290								
. 81		0.0220	0.0140	0.0090								
. 124	37	0.0090	0.0050	0.0040								
. 57	58	0.0010	BG	BG								
. 79		0.0130	0.0070	0.0050								
. 80		0.0220	0.0140	0.0090								
. 83		0.0700	0.0420	0.0290								
		All values	negative	unless p	proce	eede	ed by	a P				
		BG= Back	ground									
7												
•												
2												
13												
-												
					1							

Don't Forget

- Vapor Intrusion is Pressure Differential Driven
- Sub Slab Depressurization is our best tool for mitigation
- Design using A.R.E. (Applied, Resulting, Effected)
- Proper Pressure Field Extension Technique is key
 - Safety
 - Thorough
 - Don't stop collecting data until you are confident in results

Thanks for listening!!

gbarr@ObarSystems.com