

TN Vapor Mitigation Guidance – One Year Later Indoor Environments 2023 – Radon and Vapor Intrusion Symposium

October 30, 2023

Ahmet Bulbulkaya

Division of Remediation

Tennessee Dept. of Environment and Conservation

Division of Remediation

- The Division of Remediation identifies and investigates hazardous substance sites throughout the state.
- Use practical and effective remedies to stabilize, remediate, contain, monitor, and maintain these sites.
- These efforts minimize threats to public health, safety, and the environment.
- Hazardous Substance Cleanups in Tennessee
 - National Priority List Sites (National Superfund)
 - State Responsible Party Sites (State Superfund)
 - Dry Cleaner Environmental Response Program (DCERP)
 - VOAP/Brownfields
 - Oak Ridge Reservation

Division of Remediation

- Hazardous Substance Cleanups in Tennessee
 - A total of 3,431 sites
 - 819 Open
 - 2,612 Closed

VOAP Introduction

- Brownfield Projects Voluntary Cleanup Oversight and Assistance Program (VOAP) (TCA 68-212-224)
 - Established in 1994.
 - Voluntary Parties can enter into voluntary agreements for the investigation and/or remediation of brownfield sites or projects.
 - Upon completion of all terms and conditions of a voluntary agreement no further action will be required of the participant.
 - Became the predominant State program for addressing and developing impacted property and dealing with environmental liability.

Brownfields Definition

Brownfields are abandoned or underused industrial or commercial properties where redevelopment may be complicated by real or perceived environmental contamination.

- Abandoned and former gas stations
- Former dry cleaners
- Former industrial facilities
- Legacy contamination of unknown origin

VOAP Program

- As of May 2023, have 486 open VOAP sites active across the State
- Have closed 1,694 since program inception

What is Vapor Intrusion?

- Vapor intrusion (VI) occurs when there is a migration of vapors from vapor-forming chemicals from any subsurface source into an overlying building.
- Vapor-forming chemicals may include:
 - Volatile organic compounds (VOCs), such as trichloroethylene and benzene
 - Select semi-volatile organic compounds, such as naphthalene
 - Elemental mercury
 - Some polychlorinated biphenyls and pesticides
- Chlorinated VOCs and petroleum related compounds (BTEX) most commonly encountered

Generic Conceptual Site Model

Source: ITRC, 2007

Collecting Indoor Air and Soil Gas Samples

Passive Samplers

Passive Mitigation - Vapor Barrier in a Crawlspace

Active Mitigation

Sub-Slab Depressurization System

New Vapor Intrusion Guidance for the VOAP

- Vapor Mitigation Guidance for Sites Enrolled in the Brownfield Projects Voluntary Cleanup, Oversight and Assistance Program (August 2022)
- Why the VOAP Program?
 - Over 300 active VOAP sites across Tennessee
 - Brownfield Projects often are built on properties impacted by past use of VOCs
 - Vapor intrusion is the predominant risk pathway at most brownfield/VOAP sites

Guidance Objectives

- Develop data-driven process for making mitigation decisions
- Process must be conducive to Brownfield redevelopment timelines
 - Streamlined process
 - Limited mobilizations, perhaps even just one
 - Data must be relatively easy to obtain
- Protect human health from vapor intrusion risks

Key Concepts

- Soil gas data is used as the primary line of evidence to determine if a vapor mitigation system is required
- After a required system is installed, there will have to be a demonstration that it is working (Commissioning)
- Installed systems will function in perpetuity unless a demonstration can be made that they are no longer needed.

Guidance Overview

Contains sections on:

- Scoping and Planning
- Sampling and Characterization
- Risk Analysis
- Vapor Intrusion Mitigation
- Post-Installation Performance Monitoring

Sampling and Characterization • Soil Gas – Sub-Slab or Exterior

Square footage of building	Number of SSSG Samples
Up to 1,500	2
1,501 to 3,000	3
3,001 to 5,000	4
5,001 to 10,000	5
10,001 to 20,000	6
20,001 to 100,000	One additional sample every 10,000 sq. ft.
100,001 to 250,000	14 minimum. One additional sample every
	15,000 sq. ft. above 100,000 sq. ft.
250,001 and greater	24 minimum. One additional sample every
	18,000 sq. ft. above 250,000 sq. ft.

Table 3-1 Minimum Number of Sub-Slab Soil Gas (SSSG) Samples*

Mitigation Criteria for Existing Buildings

Lower Risk				Higher Risk
Cancer Risk	1E-06	1E-05	1E-	04
	Mitigation Not Required	Mitigation Passive or Ac Accep	n Required ctive Systems ptable	Active Mitigation Required
Hazard Index	0.1	1.0	3.	.0
Lower Risk				Higher Risk

Mitigation Criteria for New Construction

Lower Risk					Higher Risk	
Cancer Risk	1E-	-06 1	E-05	1E-04		
	Mitigation N	lot Required	Mitigation Require Passive or Active Systems Acceptab	e d le	Mitigation Required Active System Required or Passively Vented System with Ability to Convert to Active System	
Hazard Index	0.	.1	1.0	3.0		
Lower Risk					Higher Risk	

Indoor Air Verification Sampling

- Assumption is that mitigation will occur in perpetuity if source removal does not occur, however;
- Decommissioning can occur with TDEC approval based on a demonstration that conditions have changed and no longer pose an unacceptable risk

Benefits of New Guidance

- Consistency Across the State
 - VI is now managed by project managers in a more consistent manner
 - Brownfield projects across the State have same degree of VI protectiveness
- Clarity on Data Needs
 - Data needed to address VI pathway at Brownfield sites is described
- Increased Transparency
 - All parties understand what to expect and understand DoR's decision process
- Provides an Efficient Process
 - Conducive to Brownfield redevelopment timelines

Topics we are planning to work on...

- Additional Mitigation System Specifics on Discharge Points
 - Seeing evidence of short circuiting with active systems. Considering recommending that discharge points are extended higher than a foot above parapet and distance from any air intakes is increased > 10 ft.
- Confirmation Sampling Alternatives to 4Qs of SUMMAs?
 - Issues with sampling 4 quarters of indoor samples w/ SUMMAs are recognized:
 - Disturb inhabitants
 - Indoor Air Background is vexing
- Decommissioning Guidance
 - Currently light on details. Working this out in a site-specific basis. Rebounding potential is key issue.
- Discuss situation where soil gas may not be relevant:
 - I.E., Soil gas in downtown Nashville when towers are being built with subsurface parking in bedrock

In Conclusion...

Contact Info:

- Ahmet Bulbulkaya
 - 615-532-0227
 - <u>Ahmet.Bulbulkaya@tn.gov</u>
- Justin Meredith
 - 615-532-9304
 - Justin.M.Meredith@tn.gov
- Guidance Available at:

www.tn.gov/content/dam/tn/environment/remediation/documents/vapor/rem-VOAP_VM_GUIDE.pdf