COMMUNITY-SPECIFIC ATTENUATION FACTORS & POINT OF COMPLIANCE for chemical VAPOR INTRUSION

Schuver, Henry, DrPH & Crincoli, Klara, PhD

US EPA, Office of Resource Conservation and Recovery, Cleanup Programs Branch, Washington D.C.

> The 37th annual **Indoor Environments** 2023[™] – The Radon and Vapor Intrusion Symposium **Oct. 30, Nashville, TN**

Disclaimer: The views expressed in this presentation are those of the authors and do not necessarily represent the views or policies of the U.S. EPA.

Outline

- Scope
- 1) Early Approaches Attenuation Factors
- 2) Current Approaches Indoor Air Sampling
- 3) Proposed Combination
 - *Improved* Indoor Air Sampling for accessible bldgs.
 - *Improved* Attenuation Factors for *in*accessible bldgs.
- Summary: Providing more accurate & effective Assessments for
 - 100% of the Buildings

Indoor Environments – Scope Soil Gas intrusion into Indoor Air

- Focus here: *chemical* Vapor Intrusion (VI)
 - More specifically, **human-made** chemicals:
 - Not naturally-occurring Radon, although:
 - Excellent Tracer of soil gas intrusion into indoor air
 - Significant Hazard for cancer, as *initiator*, & with possible interactions with chemical *promoters*
 - Chlorinated-chemical Vapor Intrusion (cVI), aka VI
 - **Recalcitrant***-chemicals, e.g.:
 - chlorinated,
 - some per- and polyfluoroalkyl substances [PFAS]

*As more easily **degradable** compounds,

e.g., most petroleum compounds, are often

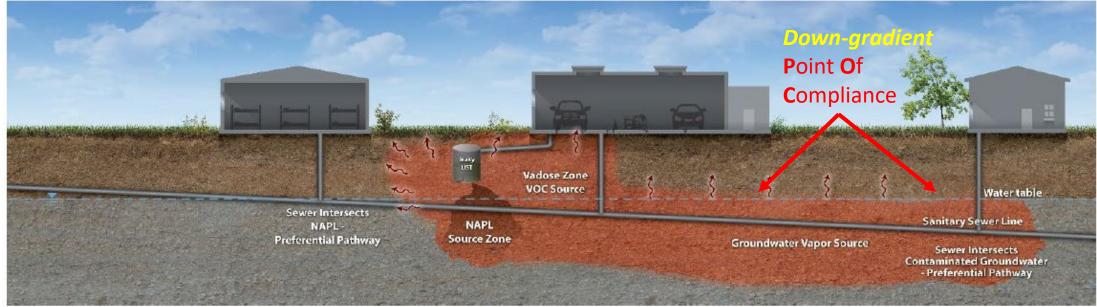

Bio-degraded/broken down into less toxic components prior to completing a pathway into indoor air

 Figure 1. Example VI CSM Scenario - Vapor Intrusion Matrix of Technologies for Selecting the Most Effective

 Investigative Strategies

 Focus/Scope here: Off-site Community downgradient of the release

(Not overlying the original release in the unsaturated zone)

Point of Compliance (POC) in 'deep-native' soil gas <u>only subject to diffusive flow</u>, and away from Human-built subsurface structures that could induce advective flow & form locally-reduced conc.

Modified from:

DoD Vapor Intrusion Handbook Fact Sheet Update No: 007 Date: July 2019

For Open Publication

CLEARED

OFFICE OF PREPUBLICATION AND SECURITY REVIEW

Matrix for Selecting Vapor Intrusion Investigation Technologies

1a) Early History of Efforts to Assess VI Exposures (that are Verifiably-Accurate)

- RCRA Env. Indicators (Feb. 1999) VI is real, Not due to indoor background
 - So 'look to the latest guidance'
- Attenuation Factors (AF)
 - RCRA EI VI Guidance (2001) J&E model-predicted AF
 - without indoor air samples attempts to validate model, was only possible if, changed soil types from silty-clay to sand
 - OSWER (2002) Empirical (measured assoc. indoor air data across the US) AF
 - Based on national (EPA Regional & State) data collated by Dr. H. Dawson

VI Attenuation Factors (AF), are used to estimate Indoor air conc. – by simplifying the complex

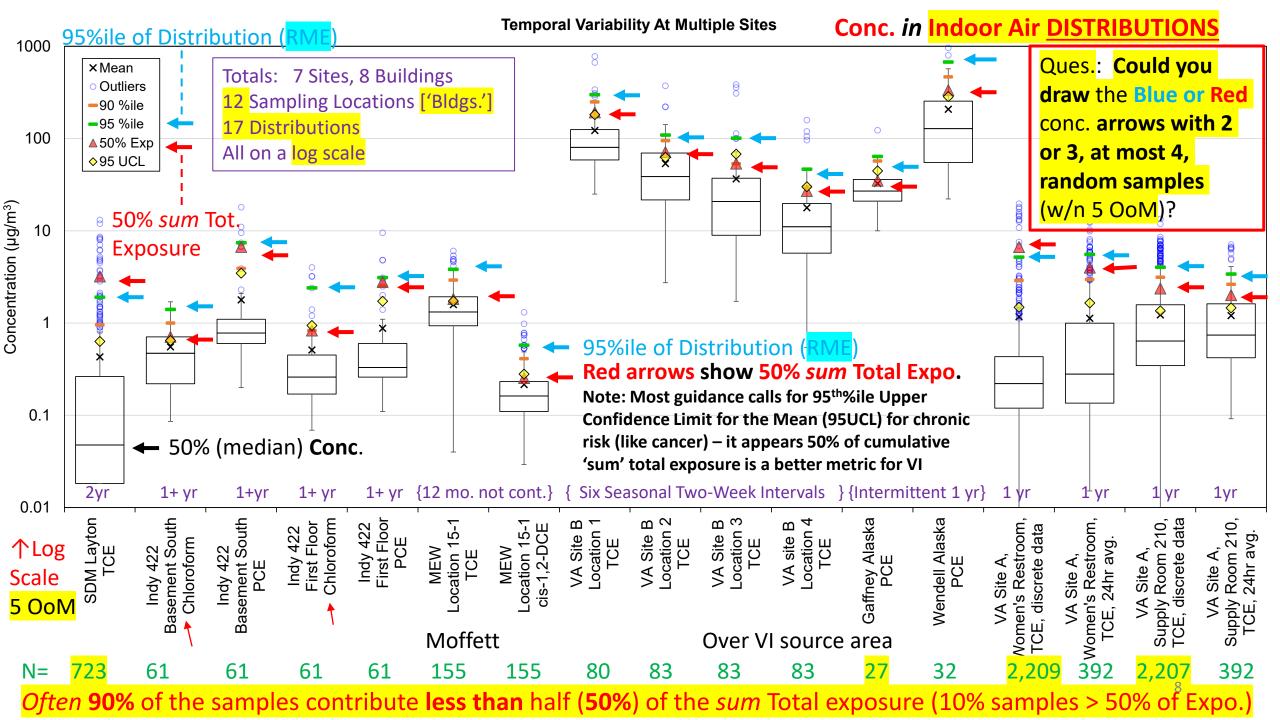
- VI Attenuation Factors (AF)
 - Ratio of concentrations (indoor to subsurface [~proximate source conc.])

 $AF = \frac{1 \text{ ug/m}^3 \text{ in indoor air}}{1000 \text{ ug/m}^3 \text{ in soil gas}} = 0.001$

• *Early* methods used the:

Can also be considered the fraction of indoor air that is from soil gas

- Measured subsurface soil gas Conc. in proximity of an occupied building
 - and
- Multiplied that by either a model-derived, or previously measured, Attenuation Factor, typically from some other sites (within your state or nation);
- To calculate an **estimated** indoor **air conc**. in the building(s) **from VI**


2a) Current Efforts to Assess VI Exposures (that are Verifiably-Accurate)

- Indoor Air
 - USEPA-OLEM (2015) 'more than one' indoor air (IA) sample
 - States & EPA (as of **2021**) Summary by Dr. Levy at AEHS March 2021*
 - 2023 still ~2-3 indoor air samples per bldg., from small subset of bldgs.
 - Most guidance do NOT specify WHEN to sample; most random, some winter focus
 - Studies show indoor air conc. are highly variable across time (e.g., 3% of days can cause ½ total exposure)

 Typically, only a One-'time' assessment – before a <u>Final</u> decision on bldgs. & entire Site

- When there are many changes in source, weather, bldg. cond. etc. varying over years/decades
- Point of Compliance (POC) is often Indoor Air (& exceedances only cause 1 bldg. mitigation (less often focus is on soil gas media conc. to be cleaned up))

*See https://iavi.rti.org/assets/docs/02_Guidance_on_Sampling_Temporal_Variability_2021_AEHS.pdf 7

Proposed: Improvements & Integration of Current & Early Methods

- 2b) Overcoming Limitations of **Current** Methods
 - Testing indoor air sampling effectiveness, suggests:
 - Improvements in indoor sampling methods are needed
 - Access to indoors to sample is a major barrier
- 1b) Overcoming Limitations of **Early** Methods
 - Generic AF are based other types of buildings, climates, releases, ...
 - But we can calculate an AF from all the neighbors that had indoor air sampled
 - If a majority of bldgs. were sampled, their AF distribution could represent unsampled bldgs.

2b) Testing Effectiveness of Current Indoor Sampling with & w/o continuous Indicators & Tracers (I&T) guiding IA sampling times

Ranking Effectiveness of different Sample Scheduling strategies¹

Goals of sampling	9 <mark>0</mark> th %ile dist.	<mark>50th%ile</mark> of <mark>total</mark> exposure ³	
Using Max. of 4 samples ²	<u>Short-term</u>	Long-term	<u>Summary</u>
 Low radon (Rn), Tracer, Do NOT sample Now 	19%	32%	Lowest <mark>4</mark>
 Random [commonly used method] 	35%	48%	Low ⁵
 Seasonal (winter/heating) 	67%	84%	Better
 I&T (Rn) guided times (any season) 	65%	86%	Better
 I&T (Rn) guided times (winter/heating)⁶ 	89%	98%	Best

¹ Ranking simplified ~results of sampling in 12 bldgs./zones in Fig. 2 & 3 Lutes et al. (Sample Scheduling ...) submitted for pub.
 ² Using max. not in explicit in most guidance (but RAGS), typically too few samples to calculate 95UCL, so should be common?
 ³ Used in instead of 95UCL of Mean in our study, since better for VI, but Not in guidance, so how common?

⁴ Two-edged sword – can also be used to avoid detection of VI (we recommend occupants monitor their bldg. Rn)

⁵ Majority of cases provides *mis-information* reporting 'all safe' when they are Not

⁶ Possibly due to longer pathway from source of VOC needing sustained period of high intrusion relative to nearby Rn₁₀

Most effective Indoor air samples are *timed* by *Continuous* **I&T** monitoring, but ...

- <u>Access</u> to personal living/working spaces for sampling is often a <u>Barrier</u> even for short-period samples at convenient/random times, and often only 1/10 to 1/4 of bldgs. are *even sought* to allow indoor air sampling
 - Often **unsampled** bldgs. are simply **assumed** to have **lower VI** than those tested
- EPA-ORD has field trials where volunteers are allowing meters to be placed for continuous I&T measurements to identify the times for chemical sampling at VI peaks & access appears to be approaching ½ bldgs. asked to participate*
- If enough continuous I&T sampling was possible by volunteer, bldgs. the observed AF from ~½ of the buildings (with indoor air samples) could be used to represent the range of AF for bldgs. without indoor air samples

*Potential for selection bias as lower income households have less time and flexible schedules to volunteer/participate

1b) VI Attenuation Factors (AF), are used to: Simplify the Complex

- *Recall*: VI Attenuation Factors (AF)
 - Ratio of concentrations (indoor to subsurface [~proximate source conc.])

$$AF = \frac{1 \text{ ug/m}^3 \text{ in indoor air}}{1000 \text{ ug/m}^3 \text{ in soil gas}} = 0.001$$

- We *now* know: AF **combine** a wide variety of factors from both:
 - Natural &
 - Human-built Environment (HbE)
- Both categories are very complex & variable
 - Opinion Human-built Environments (HbE) are MUCH less predictable
 - (vs. Laws of Nature) which are constant, but we can rarely monitor the full extent of variation

We now know **Attenuation Factors** involve: Different Levels & Additive'+' Complexity

• Natural environments are complex enough

- But we have 100s of years study of 'constant' natural 'laws' & predicting their behavior (GW)
 - Human-induced GW flow (e.g., due to pumping) should be considered, but not that variable
- HbE & human behavior influences on vapors are much less predictable
 - Human-engineered designs/construction and activities/alterations in/to the subsurface have evolved over hundreds of years (+ climate change)
 - Condition (e.g., vapor permeability) of modern &/or abandoned human-built structures/modifications in the subsurface are often unknown & human behavior often unpredictable
- Combination of both Natural & Human-built structures & behavior variables influencing vapor intrusion conc. can often become essentially unpredictable on an individual bldg. basis (continuous monitoring critical)
 - Accurate VI *predictions* could be considered Technically Impracticable (TI)

VI (Subsurface-to-Indoor air) AF are Building-Specific & vary across time

- Limited to ~'no' evidence that a/few tested bldgs. can represent other bldgs.*
- However, accurate documentation of the distribution of attenuation factors
 - for every building with VI concerns was considered
- Economically & Technically Impracticable
 - for typical/affordable VI assessments/protection, *especially* without access for samples
- So, VI assessment guidance developed to be generically applicable across:
 - National (e.g., US)
 - EPA Region
 - States
 - Large districts of a State (e.g., Bay Area/San Francisco)

*Some correlations in relative temporal variability across bldgs. But not predictable magnitude of conc. for risk decisions.

Generic (non-bldg.-specific) **AF** for risk screening are & *should be* overly-protective (for most bldgs.)

 Generic screening values are <u>intended and designed to be protective</u> for most (e.g., **95%** of the people/settings, as in EPA VI Guidance, 2002, 2015)

GOAL = Max. 5% ERROR rate in screening exposures

- But generic soil-gas to indoor air AFs can become:
 - *Too* overly-protective when they include:
 - Too-wide of variety of
 - Natural and
 - Human-built environments
 - NOT present in the community being assessed
 - & can OVEr*-predict indoor air concentration (due to VI) & screen-in in too many buildings here
 - i.e., when the bldgs. under investigation are under-represented by the population of bldgs. used to calculate the 'generically' protective AF

*Older generic AF will not represent buildings more recently built which could have different air exchange rates (often lower) and thus older AF could **under**-predict indoor air conc. for these newer bldgs. ¹⁵

The single community where VI potential is being assessed now, is the most important

• Thus, it appears that <u>much of the variability in large-scale generic AF</u> <u>could be reduced</u> by developing a **community-scale AF**,

Specifically for the bldgs. In the community of interest &

- Development of a community-specific AF could include sampling
 - All accessible potentially-VI-impacted buildings over time, & be:
 - Reasonably Affordable
 - Accomplished in a reasonable timeframe
 - Accurately protecting the community at risk
 - Without being overly protective
 - Because it is NOT based on evidence from bldgs./conditions not in the community

Examples of wide-ranging variable factors influencing VI AF that can be **narrowed for a single community**

- Spill (composition & conditions) & Extent/Conceptual Site Model of chemical sources, NAPL/dissolved, release(s), migration, etc. ...
- Natural Environment
 - Above ground climate, weather (norms & range of variability)
 - Subsurface soil types, geology, hydrology, ... (~relatively related)
- Human-built Environment (history & occupant behavior)
 - Above ground
 - Building designs, construction, age, condition, modifications, operations, occupancy, ...
 - Sub-Surface non-natural, human modified/built 'zone of confusion' (w/ history)
 - Sewer & Utility designs, Active and Abandoned:
 - Utility pipelines, trenches, cut &/or soil/C&D fill areas, disrupted soils, buried foundations
 - Wooden & brick piping, ... [causing fascinating investigations/presentations]

Considering these factors; Suggests the use of AF could be improved:

- If:
 - Based on conc. in 'native-deep' soil gas (**below** the Human 'zone of confusion')
 - Developed for each **individual bldg**. (with measured subsurface & indoor air conc.)
 - & then
 - Use of the 'high-end' or **maximum AF** from **across** the Community/Site to:
 - Estimate indoor air conc. in all *inaccessible-unsampled* bldgs. In the Community
 - &
 - Back-calculate the acceptable conc. in 'deep' soil gas (POC) to protect the entire Community

Proposed (Future)

Combination of Improved Approaches

- Measured indoor Air
 - Collected when VI is 'turned on'
 - In all accessible bldgs.
- Community-specific measured AF-based on
 - Using 'deep' soil gas conc. & max./'high-end' AF observed in the Community
 - For estimating indoor air conc. in **all inaccessible-unsampled** bldgs.
- On-going Monitoring for as long as source remains
 - Primarily focused on soil gas conc. at the POC, with some on-going:
 - Rotational ~randomly-selected bldg. indoor air testing when VI is 'turned on'
 - That would ideally eventually sample indoor air in all 100% of bldgs.

Outline of Historical & Proposed Assessments

Phase	Media samples for:	Attenuation Factor	Indoor Air samples	Bldg-specific Exposures	Site-wide Exposures
Early	Source Conc.	Model Predicted	Estimated site-wide	Model Estimated POC = soil gas	Model Estimated
Current	Bldg. selection for sampling priority (spatial variability)	Large Area Generic National State 'Bay Area' Defines area of VI	Measured (tempo.) random samples Represents <50% of Exposure (temporal var.)	Measured 'high' vapor conc. + other 'priority' bldgs., typically 10-25% of bldgs.	 75-90% bldgs. Unsampled are Assumed < or ~ observed in priority bldgs.
Proposed addition to <i>Soil</i> <i>Gas Safe</i> <i>Commun.</i> approach	Source Conc. in soil gas at POC (& Cleanup Level)	Large Area Generic defines area, <i>Then sampling</i> <i>develops a</i> Community/Site- Specific (Max. AF Observed)	Measured I&T guided to peak, Represents ~~100% of Exposure time (temporal)	Measured, 100% 'accessible' bldgs. Represents ~>50% of all bldgs. (spatial)	~<<50% bldgs. Estimated using Community- Specific AF (max. observed)

Social & Participatory incentives with Community-Specific Attenuation Factors

- The max./'high end' observed* fraction of the underlying source conc. found in indoor air (in the community, AF)
 - is used in the screening criteria for unacceptable source conc. under all other (<u>un</u>sampled) buildings (<u>expected <<50%</u> of the entire community at risk of VI).
- Any unsampled bldg. could have a higher (max. site) AF, & thus it is to the benefit of the occupants of all bldgs. to get their indoor air sampled, to help protect; not only themselves in their own building, but to help keep the entire community from unacceptable exposures from underlying chemical wastes
- Use of the max./'high end' AF from across the site in unsampled bldgs. provides an incentive for Responsible Parties to get more indoor air samples

Summary

- While no 'silver bullet'
 - for instantly accurate, low-cost and easy assessments:
- Such a Community-specific approach that,
- Uses indoor air sample from all accessible bldgs. guided by I&T to sample peaks, &
- Uses the best site-specific evidence available, to estimate indoor air conc. in bldgs. that can not be sampled, at this time.
 - Rather than leaving unsampled bldgs. Completely un-evaluated, assumed 'safe', or
 - Using an overly generic AF to Over- or Under- protect such bldgs.
- This approach Improves on Generic AF by using actual neighbors' measured AF values & 'native-deep source' soil gas conc. & could:
- Have multiple benefits including, being *more*:
 - Protective for all (100%) bldgs.
 - Practical
 - & possibly Cost-effective
 - than typical approaches to VI assessments today

Thank You

• Questions?